《分数除法》教学设计

时间:2023-01-28 19:36:13
《分数除法》教学设计15篇

《分数除法》教学设计15篇

作为一名为他人授业解惑的教育工作者,有必要进行细致的教学设计准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。我们该怎么去写教学设计呢?下面是小编整理的《分数除法》教学设计,仅供参考,大家一起来看看吧。

《分数除法》教学设计1

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2: ……此处隐藏25464个字……师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2 )思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)

②1米的8(3)等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

②1米的4(3)与3米的4(1)一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

《《分数除法》教学设计15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式